Essay Preview: Chemistry
Report this essay
The original distinction between organic and inorganic chemistry arose as chemists gradually realized that compounds of biological origin were quite different in their general properties from those of mineral origin; organic chemistry was defined as the study of substances produced by living organisms. However, when it was discovered in the 19th cent. that organic molecules can be produced artificially in the laboratory, this definition had to be abandoned. Organic chemistry is most simply defined as the study of the compounds of carbon. Inorganic chemistry is the study of chemical elements and their compounds (with the exception of carbon compounds).

Physical chemistry is concerned with the physical properties of materials, such as their electrical and magnetic behavior and their interaction with electromagnetic fields. Subcategories within physical chemistry are thermochemistry, electrochemistry, and chemical kinetics. Thermochemistry is the investigation of the changes in energy and entropy that occur during chemical reactions and phase transformations (see states of matter). Electrochemistry concerns the effects of electricity on chemical changes and interconversions of electric and chemical energy such as that in a voltaic cell. Chemical kinetics is concerned with the details of chemical reactions and of how equilibrium is reached between the products and reactants.

Analytical chemistry is a collection of techniques that allows exact laboratory determination of the composition of a given sample of material. In qualitative analysis all the atoms and molecules present are identified, with particular attention to trace elements. In quantitative analysis the exact weight of each constituent is obtained as well. Stoichiometry is the branch of chemistry concerned with the weights of the chemicals participating in chemical reactions. See also chemical analysis.

History of Chemistry
The earliest practical knowledge of chemistry was concerned with metallurgy, pottery, and dyes; these crafts were developed with considerable skill, but with no understanding of the principles involved, as early as 3500 in Egypt and Mesopotamia. The basic ideas of element and compound were first formulated by the Greek philosophers during the period from 500 to 300 Opinion varied, but it was generally believed that four elements (fire, air, water, and earth) combined to form all things. Aristotles definition of a simple body as “one into which other bodies can be decomposed and which itself is not capable of being divided” is close to the modern definition of element.

About the beginning of the Christian era in Alexandria, the ancient Egyptian industrial arts and Greek philosophical speculations were fused into a new science. The beginnings of chemistry, or alchemy, as it was first known, are mingled with occultism and magic. Interests of the period were the transmutation of base metals into gold, the imitation of precious gems, and the search for the elixir of life, thought to grant immortality. Muslim conquests in the 7th cent. diffused the remains of Hellenistic civilization to the Arab world. The first chemical treatises to become well known in Europe were Latin translations of Arabic works, made in Spain c. 1100; hence it is often erroneously supposed that chemistry originated among the Arabs. Alchemy developed extensively during the Middle Ages, cultivated largely by itinerant scholars who wandered over Europe looking for patrons.

Evolution of Modern Chemistry
In the hands of the “Oxford Chemists” (Robert Boyle, Robert Hooke, and John Mayow) chemistry began to emerge as distinct from the pseudoscience of alchemy. Boyle (1627–91) is often called the founder of modern chemistry (an honor sometimes also given Antoine Lavoisier, 1743–94). He performed experiments under reduced pressure, using an air pump, and discovered that volume and pressure are inversely related in gases (see gas laws). Hooke gave the first rational explanation of combustion-as combination with air-while Mayow studied animal respiration. Even as the English chemists were moving toward the correct theory of combustion, two Germans, J. J. Becher and G. E. Stahl, introduced the false phlogiston theory of combustion, which held that the substance phlogiston is contained in all combustible bodies and escapes when the bodies burn.

The discovery of various gases and the analysis of air as a mixture of gases occurred during the phlogiston period. Carbon dioxide, first described by J. B. van Helmont and rediscovered by Joseph Black in 1754, was originally called fixed air. Hydrogen, discovered by Boyle and carefully studied by Henry Cavendish, was called inflammable air and was sometimes identified with phlogiston itself. Cavendish also showed that the explosion of hydrogen and oxygen produces water. C. W. Scheele found that air is composed of two fluids, only one of which supports combustion. He was the first to obtain pure oxygen (1771–73), although he did not recognize it as an element. Joseph Priestley independently discovered oxygen by heating the red oxide of mercury with a burning glass; he was the last great defender of the phlogiston theory.

The work of Priestley, Black, and Cavendish was radically reinterpreted by Lavoisier, who did for chemistry what Newton had done for physics a century before. He made no important new discoveries of his own; rather, he was a theoretician. He recognized the true nature of combustion, introduced a new chemical nomenclature, and wrote the first modern chemistry textbook. He erroneously believed that all acids contain oxygen.

Get Your Essay

Cite this page

Inorganic Chemistry And Organic Chemistry. (April 17, 2021). Retrieved from